Guichard/Hamel

Publications

2022

Visualizing the native cellular organization by coupling cryofixation with expansion microscopy (Cryo-ExM).
, , ,
Nat Methods, ; 19 (2):

2021

Correction: Expansion microscopy provides new insights into the cytoskeleton of malaria parasites including the conservation of a conoid.
, , , , , , , ,
PLoS Biol, ; 19 (9):
Expansion microscopy provides new insights into the cytoskeleton of malaria parasites including the conservation of a conoid.
, , , , , , , ,
PLoS Biol, ; 19 (3):
Characterization of the novel mitochondrial genome segregation factor TAP110 in Trypanosoma brucei.
, , , , , ,
J Cell Sci, ; 134 (5):
Overview of the centriole architecture.
, , , ,
Curr Opin Struct Biol, ; 66 :
Improving the resolution of fluorescence nanoscopy using post-expansion labeling microscopy.
,
Methods Cell Biol, ; 161 :

2020

Architecture of the centriole cartwheel-containing region revealed by cryo-electron tomography.
, , , , , , , , , , , , , ,
EMBO J, ; 39 (22):
Novel features of centriole polarity and cartwheel stacking revealed by cryo-tomography.
, , , , , , ,
EMBO J, ; 39 (22):
WDR90 is a centriolar microtubule wall protein important for centriole architecture integrity.
, , , , , , , , , , , ,
Elife, ; 9 :
Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM).
, , , , , ,
Nat Commun, ; 11 (1):
Homogeneous multifocal excitation for high-throughput super-resolution imaging.
, , , , , , , , , ,
Nat Methods, ; 17 (7):
Native Architecture of the Centriole Proximal Region Reveals Features Underlying Its 9-Fold Radial Symmetry.
, , , , , , , , , , , , ,
Curr Biol, ; 30 (11):
Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii.
, , , , , , ,
Elife, ; 9 :
A helical inner scaffold provides a structural basis for centriole cohesion.
, , , , , , , , , , , , , , , ,
Sci Adv, ; 6 (7):

2019

Flagellar microtubule doublet assembly in vitro reveals a regulatory role of tubulin C-terminal tails.
, , , , , , , , , ,
Science, ; 363 (6424):
Imaging cellular ultrastructures using expansion microscopy (U-ExM).
, , , , , , , , , , , , ,
Nat Methods, ; 16 (1):

2018

Isolation and Fluorescence Imaging for Single-particle Reconstruction of Chlamydomonas Centrioles.
, , , , ,
J Vis Exp, ; (139):
Reconstruction From Multiple Particles for 3D Isotropic Resolution in Fluorescence Microscopy.
, , , , , ,
IEEE Trans Med Imaging, ; 37 (5):
Super-resolution microscopy to decipher multi-molecular assemblies.
, , ,
Curr Opin Struct Biol, ; 49 :
The Rise of the Cartwheel: Seeding the Centriole Organelle.
, ,
Bioessays, ; 40 (4):

2017

TORC1 organized in inhibited domains (TOROIDs) regulate TORC1 activity.
, , , , , , , , ,
Nature, ; 550 (7675):
Identification of Chlamydomonas Central Core Centriolar Proteins Reveals a Role for Human WDR90 in Ciliogenesis.
, , , , , , , , , , ,
Curr Biol, ; 27 (16):
Cell-free reconstitution reveals centriole cartwheel assembly mechanisms.
, , , , , , , , , , ,
Nat Commun, ; 8 :

2016

The Human Centriolar Protein CEP135 Contains a Two-Stranded Coiled-Coil Domain Critical for Microtubule Binding.
, , , , , , , , ,
Structure, ; 24 (8):
Computational support for a scaffolding mechanism of centriole assembly.
, , , ,
Sci Rep, ; 6 :
Corrigendum: SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture.
, , , , , , , , , , , , , , , , ,
Nat Cell Biol, ; 18 (6):
SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture.
, , , , , , , , , , , , , , , , ,
Nat Cell Biol, ; 18 (4):

2015

Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography.
, , , , ,
Nat Commun, ; 6 :
Isolation, cryotomography, and three-dimensional reconstruction of centrioles.
, , ,
Methods Cell Biol, ; 129 :
Purification of centrosomes from mammalian cell lines.
, ,
Methods Cell Biol, ; 129 :

2014

Correlative multicolor 3D SIM and STORM microscopy.
, , , , , ,
Biomed Opt Express, ; 5 (10):

2013

Hepatitis B subvirus particles display both a fluid bilayer membrane and a strong resistance to freeze drying: a study by solid-state NMR, light scattering, and cryo-electron microscopy/tomography.
, , , , , , ,
FASEB J, ; 27 (10):
Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry.
, , , , , , , , , , , , ,
Curr Biol, ; 23 (17):
Caenorhabditis elegans centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry.
, , , , , , , , , , ,
Proc Natl Acad Sci U S A, ; 110 (28):
An atomistic view of microtubule stabilization by GTP.
, , , ,
Structure, ; 21 (5):
Use of red autofluorescence for monitoring prodiginine biosynthesis.
, , , ,
J Microbiol Methods, ; 93 (2):

2012

Cartwheel architecture of Trichonympha basal body.
, , , , , , , ,
Science, ; 337 (6094):

2011

Three dimensional morphology of rabies virus studied by cryo-electron tomography.
, , , , , ,
J Struct Biol, ; 176 (1):

2010

Procentriole assembly revealed by cryo-electron tomography.
, , ,
EMBO J, ; 29 (9):
Self-assembling SAS-6 multimer is a core centriole building block.
, , , , , ,
J Biol Chem, ; 285 (12):

2009

Involvement of HFq protein in the post-transcriptional regulation of E. coli bacterial cytoskeleton and cell division proteins.
, , , , ,
Cell Cycle, ; 8 (15):
Visualization of proteins in intact cells with a clonable tag for electron microscopy.
, , , ,
J Struct Biol, ; 165 (3):