Robbie Loewith

Publications

2024

Cryo-EM architecture of a near-native stretch-sensitive membrane microdomain.
, , , , , , , , , , , , , ,
Nature, ; 632 (8025): 664-671

2023

EGOC inhibits TOROID polymerization by structurally activating TORC1.
, , , , , , , , ,
Nat Struct Mol Biol, ; 30 (3): 273-285
Dynamic metabolome profiling uncovers potential TOR signaling genes.
, , , , , ,
Elife, ; 12

2022

Ultrastructure expansion microscopy reveals the cellular architecture of budding and fission yeast.
, , , , , , , , ,
J Cell Sci, ; 135 (24)
Cryo-EM structure of the SEA complex.
, , , , , , , , ,
Nature, ; 611 (7935): 399-404

2021

Chemical-Biology-derived in vivo Sensors: Past, Present, and Future.
, ,
Chimia (Aarau), ; 75 (12): 1017-1021
Flipper Probes for the Community.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Chimia (Aarau), ; 75 (12): 1004-1011
Passive coupling of membrane tension and cell volume during active response of cells to osmosis.
, , , , , , , , , , , , , ,
Proc Natl Acad Sci U S A, ; 118 (47)
Identification of a Covalent Importin-5 Inhibitor, Goyazensolide, from a Collective Synthesis of Furanoheliangolides.
, , , , ,
ACS Cent Sci, ; 7 (6): 954-962
Phosphoproteomic Effects of Acute Depletion of PP2A Regulatory Subunit Cdc55.
, ,
Proteomics, ; 21 (1): e2000166

2020

Resolving the Communication GAPs Upstream of TORC1.
,
Dev Cell, ; 55 (3): 253-254
TOR complex 2 (TORC2) signaling and the ESCRT machinery cooperate in the protection of plasma membrane integrity in yeast.
, , , , , , , , , , ,
J Biol Chem, ; 295 (34): 12028-12044
Structural Insights into TOR Signaling.
, ,
Genes (Basel), ; 11 (8)
The flipside of the TOR coin - TORC2 and plasma membrane homeostasis at a glance.
, ,
J Cell Sci, ; 133 (9)
Chemical Genetics of AGC-kinases Reveals Shared Targets of Ypk1, Protein Kinase A and Sch9.
, , , , , , , , , , ,
Mol Cell Proteomics, ; 19 (4): 655-671
The Aspartic Protease Ddi1 Contributes to DNA-Protein Crosslink Repair in Yeast.
, , , , , , ,
Mol Cell, ; 77 (5): 1066-1079.e9

2019

Tricalbin-Mediated Contact Sites Control ER Curvature to Maintain Plasma Membrane Integrity.
, , , , , , , , ,
Dev Cell, ; 51 (4): 476-487.e7
TORC2 controls endocytosis through plasma membrane tension.
, , , , ,
J Cell Biol, ; 218 (7): 2265-2276
Sphingolipids and membrane targets for therapeutics.
, ,
Curr Opin Chem Biol, ; 50 : 19-28
TOR Signaling Is Going through a Phase.
,
Cell Metab, ; 29 (5): 1019-1021

2018

Regulation of Cellular Metabolism through Phase Separation of Enzymes.
,
Biomolecules, ; 8 (4)
Decrease in plasma membrane tension triggers PtdIns(4,5)P(2) phase separation to inactivate TORC2.
, , , , , , , , , ,
Nat Cell Biol, ; 20 (9): 1043-1051
Target of rapamycin complex 2-dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae.
, , , , , ,
J Biol Chem, ; 293 (31): 12043-12053
Systematic analysis of complex genetic interactions.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Science, ; 360 (6386)

2017

Cryo-EM structure of Saccharomyces cerevisiae target of rapamycin complex 2.
, , , , , ,
Nat Commun, ; 8 (1): 1729
TORC1 organized in inhibited domains (TOROIDs) regulate TORC1 activity.
, , , , , , , , ,
Nature, ; 550 (7675): 265-269
A pathway of targeted autophagy is induced by DNA damage in budding yeast.
, , , , , , , , , , , , , , ,
Proc Natl Acad Sci U S A, ; 114 (7): E1158-E1167

2016

Reciprocal Regulation of Target of Rapamycin Complex 1 and Potassium Accumulation.
, , ,
J Biol Chem, ; 292 (2): 563-574
Dual action antifungal small molecule modulates multidrug efflux and TOR signaling.
, , , , , , , , , , , , , , , , , , , , , ,
Nat Chem Biol, ; 12 (10): 867-875
TORC2 Structure and Function.
, , ,
Trends Biochem Sci, ; 41 (6): 532-545
A Signaling Lipid Associated with Alzheimer's Disease Promotes Mitochondrial Dysfunction.
, , , , , , , , , , , , , ,
Sci Rep, ; 6 : 19332

2015

TORC1 and TORC2 work together to regulate ribosomal protein S6 phosphorylation in Saccharomyces cerevisiae.
, , , , , , , , ,
Mol Biol Cell, ; 27 (2): 397-409
TOR Complexes and the Maintenance of Cellular Homeostasis.
,
Trends Cell Biol, ; 26 (2): 148-159
Molecular Basis of the Rapamycin Insensitivity of Target Of Rapamycin Complex 2.
, , , , , , , , , , , ,
Mol Cell, ; 58 (6): 977-988
Target of Rapamycin Complex 2 Regulates Actin Polarization and Endocytosis via Multiple Pathways.
, , , , , , , , , ,
J Biol Chem, ; 290 (24): 14963-14978

2014

Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis.
, , , , , , ,
Mol Biol Cell, ; 25 (20): 3234-3246
Roles for PI(3,5)P2 in nutrient sensing through TORC1.
, , , , , , , , , ,
Mol Biol Cell, ; 25 (7): 1171-1185
A neurotoxic glycerophosphocholine impacts PtdIns-4, 5-bisphosphate and TORC2 signaling by altering ceramide biosynthesis in yeast.
, , , , , , , , , ,
PLoS Genet, ; 10 (1): e1004010

2013

TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks.
, , , , , , , , ,
Mol Cell, ; 51 (6): 829-839

2012

Amino acid signaling in high definition.
,
Structure, ; 20 (12): 1993-1994
Identification of a small molecule yeast TORC1 inhibitor with a multiplex screen based on flow cytometry.
, , , , , , , , , , , , , , , , , , , , ,
ACS Chem Biol, ; 7 (4): 715-722
Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis.
, , , , , , ,
Nat Cell Biol, ; 14 (5): 542-547

2011

Target of rapamycin (TOR) in nutrient signaling and growth control.
,
Genetics, ; 189 (4): 1177-1201
Mitochondrial genomic dysfunction causes dephosphorylation of Sch9 in the yeast Saccharomyces cerevisiae.
, , , , ,
Eukaryot Cell, ; 10 (10): 1367-1369
Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L.
, , , , , , , , ,
EMBO J, ; 30 (15): 3052-3064
A brief history of TOR.
Biochem Soc Trans, ; 39 (2): 437-442
Chemical biology approaches to membrane homeostasis and function.
, , , , , , , , , , , ,
Chimia (Aarau), ; 65 (11): 849-852

2010

Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast.
, , , , , , , , , , , , , , , , , , , , ,
Sci Signal, ; 3 (153): rs4
Profiling a Selective Probe for RTG Branch of Yeast TORC1 Signaling Pathway.
, , , , , , , , , , , , , , , , , , , , , , , , , ,
In: Probe Reports from the NIH Molecular Libraries Program, ;

2009

The Vam6 GEF controls TORC1 by activating the EGO complex.
, , , , , , ,
Mol Cell, ; 35 (5): 563-573
Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis.
, , , , , , ,
Genes Dev, ; 23 (16): 1929-1943
Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology.
, , , , , , , , , , , , , ,
Mol Biol Cell, ; 20 (7): 2083-2095
Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling.
, , , , , ,
Mol Cell, ; 33 (6): 704-716
Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2.
, , , , , ,
PLoS Biol, ; 7 (2): e38
Arsenic toxicity to Saccharomyces cerevisiae is a consequence of inhibition of the TORC1 kinase combined with a chronic stress response.
, , , , , , , ,
Mol Biol Cell, ; 20 (3): 1048-1057

2008

Caffeine extends yeast lifespan by targeting TORC1.
, , , , , ,
Mol Microbiol, ; 69 (1): 277-285

2007

Sch9 is a major target of TORC1 in Saccharomyces cerevisiae.
, , , , , , , , , , , , ,
Mol Cell, ; 26 (5): 663-674

2006

Mutual antagonism of target of rapamycin and calcineurin signaling.
, , ,
J Biol Chem, ; 281 (44): 33000-33007
Cell growth control: little eukaryotes make big contributions.
,
Oncogene, ; 25 (48): 6392-6415
A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling.
, , , , , , , , , , , , ,
Cell, ; 125 (4): 733-747
TOR signaling in growth and metabolism.
, ,
Cell, ; 124 (3): 471-484
The TOR signalling network from yeast to man.
,
Int J Biochem Cell Biol, ; 38 (9): 1476-1481

2005

Molecular organization of target of rapamycin complex 2.
, , ,
J Biol Chem, ; 280 (35): 30697-30704
Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization.
, , , , , , ,
Mol Cell Biol, ; 25 (16): 7239-7248

2004

Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive.
, , , , , ,
Nat Cell Biol, ; 6 (11): 1122-1128
Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton.
, , , , , , , ,
EMBO J, ; 23 (19): 3747-3757

2002

Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control.
, , , , , , , ,
Mol Cell, ; 10 (3): 457-468
Human ING1 proteins differentially regulate histone acetylation.
, , , , , , , , , , , , ,
J Biol Chem, ; 277 (33): 29832-29839

2001

Pho23 is associated with the Rpd3 histone deacetylase and is required for its normal function in regulation of gene expression and silencing in Saccharomyces cerevisiae.
, , , , , ,
J Biol Chem, ; 276 (26): 24068-24074

2000

Three yeast proteins related to the human candidate tumor suppressor p33(ING1) are associated with histone acetyltransferase activities.
, , , ,
Mol Cell Biol, ; 20 (11): 3807-3816
Skh1, the MEK component of the mkh1 signaling pathway in Schizosaccharomyces pombe.
, ,
J Cell Sci, ; 113 ( Pt 1) : 153-160

1996